Visualizing Flood, Drought, and Fire from one tool: The Rapid Image Viewer

Kenneth Ekpetere<sup>1, 2</sup> Jude Kastens<sup>2</sup> Xingong Li<sup>1, 2</sup> James Coll<sup>1</sup>





2022 Governor's Conference on the Future of Water in Kansas



#### Outline:

- Background to RIV Project
- RIV Collections and Components
- RIV Workflow
- Hazard scenarios and use cases
- Real-time Demo
- RIV SWOT assessment and future directions



#### Background

Flood mapping tools rely on remotely sensed images for validation.

Retrieving remote sensing images can be a hassle needing lots of experience.

The need for a tool that supports rapid visualization, monitoring, and download of remote sensing images is necessary for environmental researches.

The Rapid Image Viewer (RIV), thus helps breach that gap. RIV supports research related to flood, drought, and fire.

FLDPLN Map update for Lower Neosho around Burlington, including planned release from John Redmond (5/22/19) compared with RIV product. (2019 Great Flood of the Midwest).





# **RIV Collections and Components**

| Datasets                                        | Sensor Type | Resolution Scale | Spatial<br>Resolution<br>(meters) | Start Date  | End Date   |
|-------------------------------------------------|-------------|------------------|-----------------------------------|-------------|------------|
| National Agricultural Imagery<br>Program (NAIP) | Optical     | High             | 1                                 | 2002-06-15  | 2020-12-17 |
| Sentinel-1                                      | Radar       | High - medium    | 10                                | 2014 -09-11 | Present    |
| Sentinel-2                                      | Optical     | High             | 10                                | 2015-06-27  | Present    |
| Sentinel-3                                      | Optical     | Coarse           | 300                               | 2016-10-18  | Present    |
| Landsat-9                                       | Optical     | Medium           | 30                                | 2021-09-09  | Present    |
| Landsat-8                                       | Optical     | Medium           | 30                                | 2013-03-13  | Present    |
| Landsat-7                                       | Optical     | Medium           | 30                                | 1999-04-15  | Present    |
| Landsat-5                                       | Optical     | Medium           | 30                                | 1984-03-01  | 1993-12-31 |
| MODIS Aqua                                      | Optical     | Coarse           | 250                               | 2001-01-01  | Present    |
| MODIS Terra                                     | Optical     | Coarse           | 250                               | 2001-01-01  | Present    |

- True color image band combinations (RGB).
- False Color Image band combination (NRG-bands).
- Normalized difference water Index (NDWI).
- Segmented Image (for water edge identification).



#### **RIV Workflow**





#### The Rapid Image Viewer

1.9 00

The Rapid Image Viewer (RIV) is a web-based remote sensing application for monitoring and downloading historic, current, and near-eabline satellite images for reconnaissance and rapid decision making, Leversigni Google Earth Engines to glata processing capability, the RIV provides a user friendly-interface and hosts a combination of optical (Landast 9, 8, 7, 5, Sentinel-2) and nontorical (Sentinel-1 radar) satellite images and data products for near Orouter visualization. The RIV provides both high resolution imagery (e.g., NAIP) and low-resolution imagery (e.g., Sentinel-3, MODIS) necessary for large-cacle and near-ground studies. RIV is capabile of detecting wildlite hostpats, identifying flooded areas, and places with drought conditions.

anks to Google for Providing the Platform

#### Dataset Information

 Click each Oblassets to learn more

 extra/r-0240 (2014-09-11 to present) -1-0 day mum. Tim pixel

 extra/r-0240 (2014-09-100 barsent) -1-0 day mum. Tim pixel

 extra/r-0240 (2014-09 present) -1-0 day mum. Tim pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

 0/02000-1010 (2014-01 to Present) - 2 day go -10 day: (2005-pixel

App Project Team

pp Developer:Kenneth Ekpetere roject Supervisor:Xingong Li roject Principle Investigator:Jude Kastens

#### App Information

IV Enhencements:Click for Enhancements ite RIV:Click to see Citation

Acknowledgments

The Image Rapid Viewer is Built on Google Earth Engine development, funded by the Kansas Water Office (KWO) and nanaged by Kansas Biological Survey (KBS) .



| Dataset Handler Tabs                                                    |     |
|-------------------------------------------------------------------------|-----|
| 1) Draw Area Of Interest                                                |     |
| Click to Draw AOI                                                       |     |
| Rectangle                                                               | 1   |
| 2) Date Filter (YYYY-MM-DD)                                             |     |
| check dataset information for accurate date range on left panel         |     |
| Enter End Date Prior Day(s)                                             |     |
| 2019-05-22 30                                                           | 2   |
| 3) Select Collection Checkbox                                           |     |
| Optical (moderate to high resolutions):                                 |     |
| Sentinel-2 True Color Sentinel-2 False Color Sentinel-2 NDW             |     |
| LandSat-9 True Color LandSat-9 False Color LandSat-9 NDWI               |     |
| LandSat-8 True Color LandSat-8 False Color LandSat-8 NDWI               |     |
| LandSat-7 True Color LandSat-7 False Color LandSat-7 NDWI               |     |
| LandSat-5 True Color LandSat-5 False Color LandSat-5 NDWI               | _ 3 |
| Optical (low spatial/temporal resolutions):                             | - Ľ |
| NAIP True Color NAIP False Color Sentinel-3 0LC1                        |     |
| MODIS Terra MODIS Aqua Countries                                        |     |
| Radar:                                                                  |     |
| Sentinel-1 VV Polarized Sentinel-1 VH Polarized                         |     |
| Water Edge Detection:                                                   |     |
| L9 Water Edge 🛛 L8 Water Edge 🗌 L7 Water Edge 🔄 L5 Water Edge 🚽         |     |
| 4) Export Image                                                         |     |
| Draw AOI, enter date, and select Collection to Export Image             |     |
| Please review steps 1, 2 and 3 if the download portal is not activated. |     |
| Download                                                                | 5   |
| Reset   Refresh App.                                                    |     |
| Click to Defrech Ann                                                    | 6   |

Earth Engine Apps

https://kars.geoplatform.ku.edu/pages/e0bbb6ddfa7b444b9741cc42222817d4



# 1a. Flood

#### 2019 Great Flood of the Midwest

The flood impacted nearly 14 million people in the Midwest.

Over \$2.9 billion in property damage.

Flooding in the upper Neosho River and water increase in John Redmond Reservoir (5/22/19).

Over 50% increase in water extent.

Impacted many small towns and cities along the rivers (Neosho Rapids, Hartford, Burlington, New Strawn, to mention a few).





# 2a. Drought

Long-term Drought Impact on Lake Area Extent

Decline in Great-Salt Lake from 1980 to 2020.

Nearly 50% decline in GSL area extent.

Decreased from 7,000 km.sq in 1980's to below 3,500 km.sq in 2020's.













# **2b. Drought**

Drought Impact on Crops. (August 21, 2013) Farmlands in Garden City, Finney county, Kansas.

- D4 Exceptional Drought.
- Impacted 34.6 % of Kansas.
- Severe Impact on crops and aquatic species.









# 3a. Wildfire

#### 2021 Wildfire in California

- Nicknamed the Dixie Fire of CA.
- Started July 13, 2021, up to October 25, 2021.
- Burned over 963,837 acres.
- Impacted several counties (Butte, Plumas, Lassen, Shasta, and Tehama).
- Largest single wildfire in CA. and second largest wildfire overall.
- First known wildfire to cross the crest of the Sierra Nevada.
- Cost over \$637.4 million to fight.

Source: <u>CalFire</u>











# **3b.** Wildfire

#### 2020 Wildfire in Victoria Region, Australia.

- Triggered by the 2019 droughts in Australia.
- Decimated over a billion animal.
- Killed 75 people (20 fire fighters).
- Caused air pollution, and

vegetation depletion.

- Direct impact on climate change.
- Cost between \$4 billion \$5 billion.







### **Other Areas Of RIV Applications**

# 4. Global Monitoring



## **RIV SWOT ASSESSMENT**



#### **Real-time Demo**



https://kars.geoplatform.ku.edu/pages/e0bbb6ddfa7b444b9741cc42222817d4



### **Future Direction**

On-the-fly image segmentation and feature classification. ٠ Additional indices (burn ration, burn severity, and drought indices).



## Additional Tools from the developer



## Acknowledgement

Special thanks to these agencies for their supports in several capacities.



## Questions

Kenneth Ekpetere

Doctoral Student | University of Kansas

Kennethekpetere@ku.edu





