Three-Dimensional Model of the Kansas River Valley from Drillers' Logs

Geoffrey C. Bohling, Kansas Geological Survey Governor's Conference on the Future of Water in Kansas Manhattan, KS, Nov. 17, 2022

Kansas (Kaw) River Valley Water Resource Stressors

- Population growth and urbanization
- Business and industrial development
- Silting of reservoirs
- Climate change

KGS Kaw Valley Work

KWO-funded alluvial aquifer index well program (Butler et al.)

- Continuously monitored water level wells
- Geophysical characterization
- Sediment distribution from water well drillers' logs
- Next phase: groundwater flow model
- USDA-funded SAFE KAW (Zipper, Seybold et al.)
 - Identify actions to safeguard
 - water quantity and quality
 - rural livelihood
 - In face of climate change

WWC5 (Water Well Completion) Database

- Water well drillers submit forms for completed wells to KDHE (since 1975)
- KGS is charged by statute to archive and serve that data
 - Does so in WWC5 database
 - Well info (location, depth, owner, etc.) entered into WELLS table
 - Lithologic (sediment) logs transcribed into LOGS table
 - An ongoing and labor-intensive process
 - Much of it done by Dana Adkins-Heljeson
 - Near-verbatim transcription, with some corrections and modifications for consistency
- Scanned forms also stored so all original information is available
- Web interface: http://www.kgs.ku.edu/Magellan/WaterWell/index.html

Kaw Valley Log Locations

5,183 Kaw Valley WWC5 logs (red freckles) Reduced to 4,945 after quality assessment; 26,067 depth intervals 16 index wells (blue circles)

Kaw Valley Logs

6

The Good, the Bad...

FROM	то	LITHOLOGIC LOG		
0	6.5	Lean Clay, Gray and Brown		
6.5	8.5	Fine-Medium Sand, Gray and Brown		
8.5	10	Sandy Lean Clay, Gray and Brown		
10	13	Fine-Medium Sand, Gray and Brown		
13	18.5	Sandy Lean Clay, Gray		
18.5	34	Medium-Coarse Sand, Gray and Brown		

FROM	ТО	LITHOLOGIC LOG			
0	107	Sand	& Clay	Layers	1 · · · · · · · · · · · · · · · · · · ·
			· .		
					4 <u>.</u> .
					2 · · · · · · · · · · · · · · · · · · ·
					j i
			• •		· · · ·
				· · · · · · · · · · · · · · · · · · ·	/

Removed logs with excessively thick average intervals (> 34 ft) and then excessively thick intervals (> 40 ft) individually. Thresholds are 99th percentiles of respective distributions.

... and the Ugly

2 Type and color of material	From	То
SILT - CINDERS - BRICK	0	6
MANURE	6	12
SANDY SILT (GRAY)	12	26
FINE SAND	26	41
MEDIUM SAND W/CLAY + BOULDERS	41	57
MEDIUM SAND (GRAY)	57	82

Removed intervals containing obviously "artificial" material individually Some ambiguity: e.g., pea gravel at surface likely landscaping, etc.

Kaw Valley Logs

7

Land Surface Elevation (feet a.s.l.)

- LiDAR elevation averaged over 200 m x 200 m grid cells (200 m \approx 660 ft)
- Same grid used throughout analysis

8

Kaw Valley Logs

Bedrock Elevation (feet a.s.l.)

- Surface interpolated from
 - 1,118 bedrock elevations (depths picked from logs converted to elevation)
 - 216 bottom-of-log elevations for logs with no bedrock contact where initial bedrock surface was > 10 feet above bottom of log
- Numbers are for final dataset after removing outliers identified through cross-validation interpolation

Sediment Thickness (feet)

Land surface elevation – bedrock elevation

Kaw Valley Logs

10

Classifying Logs

11

- Sediment descriptions represented as mixtures of 71 standardized lithology codes
 - ex: "fine sand and silt" represented as 60% fsnd and 40% s
- 71 codes lumped into fewer categories on a projectspecific basis
 - Here clay, silt, sand, gravel
- Entire valley:
 - 15% gravel
 - 41% sand
 - 15% silt
 - 29% clay

Kaw Valley Logs

2D Analysis

- Facies (category) percentages between land and bedrock computed over 200 m x 200 m grid cells containing logs
- Facies percentages interpolated to empty grid cells (those with no logs) to fill grid
- Some smoothing applied to reduce interpolation artifacts
- Facies percentage summary measures:
 - Percentage coarse (sand & gravel) or fine (silt & clay)
 - Footage coarse or fine
 - Dominant (majority) facies (discrete)
 - Percentage-weighted average facies (continuous)

2D Facies Percentages

Kaw Valley Logs

11/17/2022

Summary Measures

14

Kaw Valley Logs

15

3D Analysis

- 3D grid cells are 200 m x 200 m x 5 ft (pardon my footric)
- Facies percentages computed over grid cells containing logs
- Then interpolated in 3D to fill grid and smoothed a bit
- Same summary measures can be computed

Percentage Coarse, Whole Valley

35 north-south sections at 5 km (3.1 mile) intervals from west (top) to east (bottom)

Fine / Coarse Boundary Surface

- Expect to see fine floodplain deposits overlying coarse channel deposits at most locations in valley
- Computed 50% isosurface (3D contour) for percentage coarse grid
- Simplified and generalized that isosurface to create a surface representing fine / coarse boundary elevation throughout valley
- Allows mapping of fine (upper) and coarse (lower) layer thicknesses

Fine and Coarse Layer Thicknesses

Note opposite color scales. 12 of 16 index wells shown.

Kaw Valley Logs

Upper Reach Index Well Sections

21

Color: percent coarse

Black curve: fine / coarse boundary

Vertical lines: IW locations

Scales vary

Stream-Aquifer Interactions

Hydrostratigraphy + index well + stream + PPT records = powerful framework for interpretation

22

(Work in progress)

Eastern Douglas County

23_

EC = Electrical Conductivity

Comparison with EC Logs

Higher EC in finer materials

24

Kaw Valley Logs

Conclusions

- Drillers' logs provide a geologically plausible picture of the sediment distribution in the Kansas River valley
- They agree pretty well with direct-push electrical conductivity profiles in the vicinity of index wells
- Jury is still out on comparison with tTEM (towed transient electromagnetic) electrical resistivity profiles near Lawrence
- Sediment distribution model developed here will be key input to upcoming groundwater flow model

Vertical Transition Probabilities (Upward)

Points: Empirical Lines: Model

26

Kaw Valley Logs

Horizontal Transition Probabilities

Points: Empirical

27

Lines: Model

Kaw Valley Logs