Lower Missouri River: Flood Risk Data for the Future

Governors Water Conference 2022

Will Zung, CFM, PMP – Stantec Anish Pradhananga, PE, CFM - Stantec

Why This Project?

2019 Flood Event, Missouri River

Photo courtesy of USACE – Omaha District

Why This Project?

NASA Goddard Photo and Video at <u>https://flickr.com/photos/24662369@N07/404630137</u> 83

2019 Flood Event, Missouri River

Photos courtesy of USACE – Omaha District

Why This Project

• Several large flood events in recent years.

Why This Project?

Future Flood Risk Data

Why This Project

Purpose

Partnership between FEMA and **USACE** on creating a technically sound platform for producing future flood risk data of the Missouri River for use in flood risk analysis, communication, mitigation planning, and support the implementation of mitigation actions.

Why This Project?

Goal

Produce a calibrated 2-D HEC-RAS model that can be leveraged as a baseline hydraulic model for future enhancements by FEMA or the USACE to use in Region-wide flood risk data development supporting flood risk reduction activities.

Scope of Work

Study Area

- Missouri River from St.
 Louis to Gavins Point
 Dam
- 811 river miles
- 27 major tributaries
- 60 bridges
- 358 levee systems
- 7,600 square miles of floodplain
- 52 counties

Interconnections

Scope of Work

Terrain Data

Terrain Data

- Gathering existing LiDAR DEMs
 - USGS 3DEP
 - FEMA purchases
 - USACE river corridor
 - State Repositories
- QL2 or better
- Priority to 2019 post flood and newer data

Terrain Data

- Mosaic
 - Bathymetry to Corridor
 - Corridor to Countywide
 - Countywide to Model Areas
- Managing large file size

Terrain Data

Technical Guide for Developing Bathymetric Datasets Using ArcGIS

Lower Missouri River Study Version 1.0 January 7, 2022

Scope of Work

Missouri River Structures

- 60 Bridges
 - 50 Roadway
 - 10 Railroad
- As-built data
- Field Survey

- Roadway bridges
 - As Built data provided by State DOTs
- Railroad Bridges
 - No As Built data provided
 - Accessibility is challenging
 - Solution = Terrestrial LiDAR Survey

Laser scanning of bridge crossings

- Detailed bridge survey based on overbank laser scans to develop LAS point cloud data
- Does not require access to railroad right-of-way
- Reports more detailed survey information than traditional point survey

Scope of Work

Hydrology

Missouri River Flow Frequency

- USACE provide
- 10%, 4%, 2%, 0.2%, 1%, and 1% Plus chance of occurrence within a given year.

Tributaries

- 27 Major Tributaries
 - Omaha 16 tributaries
 - Kansas City 11 tributaries

Model Setup

- Hydrograph Scaling
 - Flow frequency
 - Volume-duration frequency
- 2D Hydrodynamic Routing
 - Timing to peak at Missouri River
 - Lateral Inflow

Model Setup – Hydrographs (Peak & Volume)

Scope of Work Hydraulics

- HEC-RAS 2D hydrodynamic routing
- Enhanced Geometry
 - All bridges across main channel
 - Hydraulically significant bridges/culverts
 in overbanks
 - Levee systems
 - Prominent topographic features breaklines
 - Breaklines within stream corridor
 - Refined 2D mesh where necessary
 - Manning's roughness adjusted to capture stream channels

Hydraulic Significance of Dikes and Revetments in Channel

Levees

- Levee crest elevation profile
 - Elevation from NLD (USACE portfolio)
 - LiDAR extraction (non-USACE)
- Levees modeled using "with levee" approach
- 2D connector allow future modeling of levee failure scenarios without model geometry modification
- Levee overtopping flood frequency determined from model results

Example

Simulation of a levee breach near Hamburg, Iowa from the 2011 flood.

Scope of Work

Flood Risk Products and Communication

Flood Risk Products

- Grids for a range of flood events
 - Water surface elevations
 - Depth of Water
 - Velocity
- Changes in floodplain mapping
 - Compared to UMRSFFS
- Levee overtopping flood frequency

Communicate with Partners

Lower Missouri

A Story Map 🖪 🕑 🖉

We do what is right.

We approach every project as a partnership because our work creates a lasting impact on communities.