Kansas Ducks Unlimited

Matt Hough
Manager of Conservation Programs - KS

mhough@ducks.org

308-850-2717

Grand Island, NE

M.S. Wetland Soils and Hydrology - OSU

Sources of Support and Revenue

Kansas Ducks Unlimited

Volunteers

17,000 members

>125 annual events

>\$1.4 million annually

Conservation Staff

Tim Horst – Land Manager, Edgar NE

Matt Hough – Manager C.P., Grand Island NE

Joe Kramer – Biologist, Pratt

Abe Lollar – Biologist, Garden City

Jim Pitman – Biologist/Easement Specialist, Emporia

Craig Roy – Regional Engineer, Louisburg

Chris Thornton – Biologist, Manhattan

Kade Urban – Engineer, Hays

Ang Wright – Biologist/Permitting Specialist, Valentine NE

Why do we care about wetlands?

- Habitat
- Recreation
- Flood protection
- Water quality and quantity
- Erosion control
- Aesthetics

The US has lost 60 acres of wetland per hour over the last 200 years!

Increasing Wetland Support Base

Promoting the benefits (Ecosystem Services) of wetlands conservation to more people, communities, corporations & foundations

Playas & UNLIMITED Recharge

- Playas are depressional, ephemeral wetlands in the western third of Kansas
- They are the #1 source of recharge to the Ogallala Aquifer
- Restoration
 - Sediment removal
 - Upland buffers shortgrass prairie
 - Hydrologic restoration (pits, ditches, roads, terraces, etc.)
- Focus on Kansas communities
 - Greely and Wichita Counties for recharge PLJV RCPP
 - Possible projects around nitrate reduction KDHE
- DU has cost-shared on over 4,000 playa wetland acres to date and counting
- FSA's CRP-38B has enrolled over 11k playa acres & buffers.
 - New signup has begun
- Workshop January 10-11, Liberal KS
 - We are looking for sponsors! \$\$\$

By The Numbers (best estimate)

Number of playas in KS

22,046

Total number of acres

81,495.74 acres

Average size of playa

3.70 acres

*Average recharge to aquifer (acre foot)

20,373 acre/ft

*Average recharge to aquifer (gallons)

6,621,225,000 gallons

 Average recharge: is base off average rainfall with a properly functioning playa. Over 90% of KS playas are not functioning properly due to sedimentation and other factors.

MAJOR RIVER BASINS IN KANSAS

Phreatophyte Control

- Invasive woody species removal
- Focused on removal of species that use alluvial groundwater
 - Tamarisk, olive, ERC
- Estimated 1-acre foot of water can be returned for each 1.85 acres controlled or 0.54 acre-feet/ac
- Focal Areas
 - Rattlesnake Creek
 - Republican River (Cheyenne Co.)
 - Western Arkansas
 - Ninnescah River
- Chemical/mechanical
- Win-win scenario with cattle producers/conservation
- KAWS Workshop March 21-22, Dodge City, KS

Flood UNLIMITED Abatement

- Wetlands are Earth's sponges
- An acre of wetland, 1' deep, can hold 330,000 gallons of water, reducing the magnitude of downstream flooding.
- Retimes flooding and slows it, reducing the energy & increasing recharge
- Restorations
 - Ditch Plugs
 - Sediment removal
 - Levees & WCS
 - Pumping infrastructure

Wetland Values

Flood Water Storage

Wetlands & Water Quality

- Wetlands are Earth's kidneys
- On average, an acre of wetland can remove 40-70%* of excess nitrate loads from 100 acres of cropland runoff.
- It can also trap a dump truck load (13 tons)* of sediment annually before it enters rivers or reservoirs.
- Wetlands can remove up to 80%* of phosphorus & can also cycle out many pesticides.
- This is really gaining traction in IA, OH, MN, and more.
 - Less so in Kansas...YET!!!
- Case Study Clinton WA
 - Study with City of Lawrence, KDHE, KDWP & KAWS
- · Opportunities abound in KS
- Expensive? Not really, and it's long-term!
 - Compared to other BMPs wetlands are 3-5x less expensive per lb N or P removed
 - Demand is only growing

^{*}These ranges are from several international studies, and we are looking to assemble more local information for Kansas wetlands.

Integrated assessment modeling reveals near-channel management as cost-effective to improve water quality in agricultural watersheds

Amy T. Hansen^{a,b,1}, Todd Campbell^c, Se Jong Cho^{a,d}, Jonathon A. Czuba^{a,e}, Brent J. Dalzell^{f,g}, Christine L. Dolph^{h,i}, Peter L. Hawthorne^j, Sergey Rabotyagov^k, Zhengxin Lang^k, Karthik Kumarasamy^l, Patrick Belmont^l, Jacques C. Finlay^h, Efi Foufoula-Georgiou^{a,m,n}, Karen B. Gran^o, Catherine L. Kling^{c,i}, and Peter Wilcock^l

^aSt. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455; ^bCivil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS 66045; ^cCenter for Agricultural and Rural Development, Iowa State University, Ames, IA 50011; ^dHydrodynamic Branch, US Geological Survey, Reston, VA 20192; ^eDepartment of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061; ^fDepartment of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108; ^gSoil and Water Management Research Unit, US Department of Agricultural Research Service, St. Paul, MN 55108; ^hDepartment of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108; ⁱDyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853; ^jInstitute on the Environment, University of Minnesota, St. Paul, MN 55108; ^kSchool of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195; ^lDepartment of Watershed Sciences, Utah State University, Logan, UT 84322; ^mDepartment of Civil and Environmental Engineering, University of California, Irvine, CA 92697; ⁿDepartment of Earth System Science, University of California, Irvine, CA 92697; and ^oDepartment of Earth and Environmental Sciences, University of Minnesota, Duluth, MN 55812

- Riverine water quality study conducted in MN in an intense row-crop ag area with very poor water quality regarding cost-effectiveness of wetlands vs other BMPs
- Key Takeaways
 - Fluvial wetlands (wide, slow flowing and in the riverine corridor) are the **single-most cost-effective management action** to reduce nitrate and sediment loads.
 - Wetland restoration will be essential to meeting moderate to aggressive water quality targets.
 - Wetlands are costly up front but not when compared to long-term benefits
 - Placement and planning are critical
 - Watershed level planning and interagency cooperation will be required.

Wetlands & Climate Change

- Wetlands help store and regulate carbon (think peat bogs or bottomland forest)
- Studies support wetlands like playas reduce greenhouse gas emissions.
 - Wetland protection and restoration ensures that wetland aren't converted to cropland which releases stored soil carbon as CO2 through oxidization.
- There has been some research on increased methane production by wetlands BUT this is a natural process.
 - DU was recently awarded a NRCS grant with USGS to study this aspect of wetlands in CRP across the country including KS.
- Other services of wetlands like recharge, flood abatement, and acting as natural firebreaks all help mitigate the other impacts of climate change.

2011-2020 average vs 1951-1980 baseline -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C -0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 °F

Courtesy: Mitsch 2016

Beaver Dam Analogs

- BDAs and PALS (Post Assisted Log Structures)
 - Beaver dams without beavers?
 - New low-tech stream and wetland restoration technique
 - Popular in western US (UT, CO, OR, etc.).
 - Recently approved in KS as an EQIP practice.
- Conservation Innovation Grant
 - KS and NE Sites (Great Plains focus)
 - Focused on climate resiliency
 - Groundwater recharge
 - Water quality
 - Sediment storage
 - Stream morphology
 - Fish and invertebrates
 - Flooding impacts and floodplain reconnection
 - Workshops in 2023

Courtesy: Utah USFWS PFW

Courtesy: Utah USFWS PFW

Beaver dams overshadow climate extremes in controlling riparian hydrology and water quality

Christian Dewey, Patricia M. Fox, Nicholas J. Bouskill, Dipankar Dwivedi, Peter Nico & Scott Fendorf [™]

Nature Communications 13, Article number: 6509 (2022) Cite this article

3031 Accesses | 288 Altmetric | Metrics

- Study in CO looking at beaver dams, hydrology, and water quality.
- Key Takeaways
 - Beaver dams could overshadow climatic hydrologic extremes in their effects on water residence time and oxygen and nitrogen fluxes in the riparian subsurface
 - Nitrate removal increased by 44.2%
 - Recharge of the alluvium was 10.7–13.3 times greater than seasonal hydrologic extremes

Professional Services

- Surveying
- Engineering
- Wetland Permitting
- Construction Bidding
- Construction Management
- Wetland Mitigation

Conservation Hotspots

Ecological Focus Areas

Kansas Boundary

Aquatic Focus Areas

Terrestrial Focus Areas

Terrestrial

- A Arikaree Breaks
- B Playa Landscape
- C Smoky Hill River Breaks
- D Arkansas River Sandsage Prairie K Chautauqua Hills
- E Cimarron Grasslands
- F Red Hills
- G Quivira

- H Cheyenne Bottoms
- I Smoky Hills
- J Flint Hills
- L Eastern Tallgrass Prairies
- M Eastern Forests
- N Ozark Plateau

Aquatic

- 1 Upper Republican 7 Neosho
- 2 Upper Arkansas 8 - Smoky Hill
- 9 Lower Republican 3 - Cimarron
- 4 Lower Arkansas 10 - Missouri
- 5 Walnut 11 - Marais des Cygnes
- 6 Verdigris

Research Priorities

- Water quality in Kansas riparian wetlands and playas
- Beaver and BDAs and wildfire mitigation
- Wetland hydrologic connections to river alluvium in floodplains
- Phreatophytes and recharge
- Interdunal geomorphology and importance to wildlife/migratory birds
- Carbon storage in Kansas wetlands/buffers
- Wetland vegetation benefits for pollinators (especially Monarchs)

Partners and Programs

- ► KDWPT Habitat First; Pittman Robertson; WIHA
- Kansas Forest Service
- USFWS PFW
- Department of Conservation
- Conservation Districts
- Other NGOs
- ► KDHE/KAWS/WRAPS watershed programs

Department of Wildlife, Parks

and Tourism

\$\$\$ Funding Projects \$\$\$

Public

- US Fish and Wildlife Service
 - North American Wetland Conservation Act (NAWCA) \$2-4M/Annually
 - KDWP/PR
 - Partners Program
 - Section 6
- US Department of Agriculture
 - Wetland Reserve Easements (WRE); Agricultural Land Easements (ALE)
 - Environmental Quality Incentive Program (EQIP)
 - Regional Conservation Priority Partnership (RCPP)
 - Farm Service Agency (FSA) Conservation Reserve Program (CRP)
- National Fish and Wildlife Foundation (NFWF)

Private

- Landowners (in-kind; cash; donated easements)
- Private Donors
- Corporations
- Foundations

Future is Bright for Wetlands and Stream Conservation!

- ✓ Growing corporate sustainability movement
- Consumer pressure for sustainable sourcing and practices
- Growing public agency investments in ecosystem services
- Environmental conscience of the next generation

