It's Finally Here...

A Live Flood Mapping Tool for Kansas

Elevation

Kansas Inundation Library Coverage

Background

- Inundation library coverage developed for gaged stream network spanning greater eastern Kansas (GIS-PB funding 08, 09, 11, 13)
- Library put into action during record 2019 flooding
- Funding for mapping tool development provided by KWO (2020-2023)
 & KDEM (2020)
- Work in progress
 - More enhancement to come
 - Tool could provide foundation for broader functionality related to water and/or emergency information

System Structure

Terrain Processing: DEM (Digital Elevation Model)

This DEM was created using LiDAR data.

Shown is a portion of the river valley for Mud Creek in Jefferson County, Kansas.

DEM (shown in shaded relief)

Terrain Processing: Flow Direction

Each pixel is colored based on its <u>flow</u> direction.

Navigating by flow direction, every pixel has a single *exit path* out of the image.

Flow direction map (gradient direction approximation)

Terrain Processing: Stream Delineation

The Mud Creek streamline is identified (shown in blue) using an appropriate flow accumulation threshold.

"Synthetic Stream Network"

Terrain Processing: Floodplain Mapping

The 10-m floodplain was computed *for Mud Creek* using <u>the</u> FLDPLN model.

FLDPLN is a pseudokinematic, 2D flow model that requires only DEM data as input.

10-m Floodplain (DTF Map)

The FLDPLN ("Floodplain") Model—

There are two ways that point **Q** can be flooded by water originating from point **P**:

"Water flows downhill"

Backfill Flooding—accounts for floodwater expansion due to swelling processes

Spillover Flooding—accounts for floodwater rerouting (new flow path development)

PLAN VIEW illustrating backfill and spillover flooding

Backfill Flooding Is Not Sufficient

Here is what a DTF map looks like determined using only backfill flooding.

Note the erroneous discontinuities.

These are caused by ridgelines in the DEM.

Backfill + Spillover Flooding

By backfill flooding using small flood depth increments and allowing spillover flooding to occur on the floodplain boundary between iterations, the DTF discontinuity problem is mostly resolved.

Seamless modeling with FLDPLN

FLDPLN Model – Building a Library

- A floodplain pixel (FPP) can be flooded by the water originated from flood source (stream) pixels (FSPs) through backfill and spillover flooding
 - FSP-FPP flood relation
 - many-to-many relation
- Depth to flood (DTF)
 - Minimum depth at a FSP needed to flood a FPP
 - Attribute associated with a FSP-FPP relation
- FLDPLN model identifies the FSP-FPP flooding relations and their associated DTFs
 - Iterative process

FLDPLN Libraries for Eastern Kansas

- 25 libraries cover eastern Kansas (~100 GB file size)
- Based on 5-m LiDAR DEM

Flood mapping examples using FLDPLN

Efficient mapping using tiling

- Organize relations by tiles
- Flood mapping by tiles
 - Avoid memory overflow with a proper tile size
 - Scalable
 - Mapping tiles in parallel
 - Each tile can be mapped independently

Gauge and Stage

- Driver of floods
- Estimate FSP depth of flow (DOF)
 - Snap gauges to FSPs
 - Based on steam orders
 - From low to high
 - Simple linear interpolation
 - Vertical interpolation
 - Use 100-year-flood profile
- Sources
 - NWS AHPS and USGS
 - State and local networks
 - Bridge gauges

Serve Flood Maps on Web

- Accessible to KDEM and the general public
 - Don't need to run flood mapping locally
- Flood maps are served using ArcGIS Server
 - Tiled flood maps (COGs) are served as ArcGIS image services using mosaic datasets
- Stream flood maps are updated hourly at the hour
- Reservoir are updated every 6 hours

Web Applications

- Flood map services consumed by desktop GIS software
 - ArcGIS or QGIS
- Web applications allow anyone with internet connection to access flood maps
- The dashboard is built using ArcGIS Dashboard template served on AGO
- Exploring an alternate open-source web application
 - streamlit + leaflet

Full Open-Source Experimental Web App

JupyterBook Documentation

Kansas Flood Mapping Dashboard - temporary website

https://www.arcgis.com/apps/dashboards/dfa979db9f6f44fd8694bb1e9f53623a

Stream Flood Depth (Nowcast)

(1-hr refresh)

Reservoir Depth

(bathymetry + LiDAR, 6-hr refresh)

Stream Flood Depth (random) (for testing)

Historical/Scenario Maps

(coming soon)

kars.geoplatform.ku.edu--> Web Apps & Projects--> Rapid Image Viewer

Landsat, Sentinel, and other remotely sensed imagery can be viewed & exported

