Evaluating groundwater conservation using emerging remotely sensed products

Co-authors:

- Andrea Brookfield, University of Waterloo
- Jill Deines, Pacific Northwest National Labs
- Tim Foster, University of Manchester
- Jude Kastens, Kansas Biological Survey

Acknowledgments: Jim Butler, Will Carrara, Ashley Grinstead, Forrest Melton, Brownie Wilson

Sam Zipper, Kansas Geological Survey, University of Kansas

samzipper@ku.edu

Groundwater challenges

- Declining water levels in High Plains Aquifer
- Conservation options include local enhanced management area (LEMA) and water conservation area (WCA) programs

Groundwater conservation success

SD-6 LEMA has reduced water use

and slowed water table decline

Closing the water balance

 Groundwater use and water level data extremely useful for assessing irrigation and groundwater conservation program effectiveness

Potential

- However, gaps remains:
 - Spatial scale: Points of diversion (wells) → Field or sub-field (30 m)
 - Temporal scale: Annual, with lag Near-real-time
 - Water balance: Only measure pumping —— Other parts of water balance (ET, return flows, ...)
- One potential tool for spatial and temporal disaggregation: remote sensing
 - New product: OpenET (daily, 30 m resolution)
 - 1. Can satellite-based approaches provide reasonable estimates of groundwater pumping?
 - 2. What are major sources of uncertainty in translating ET to pumping volumes?

OpenET: A new tool

- Application-ready data for 6 algorithms + ensemble mean
- Daily, 30 m resolution -> using field averages here
- Throughout presentation, using preliminary data
- Details in Melton et al. (2021) JAWRA

Can ET data provide reasonable pumping estimates?

Total Growing Season ET*

* Also tested total annual and water year

Precipitation Deficit (ET - P)

(AIM; Deines et al)

QAQC Procedure

- Identify anomalous land covers
- Percentile by crop type/irrigation status/year
- Negative values

Compare to flowmeter data

Water Rights Groups

 Group fields by water right, place of use, and point of diversion. Annual fieldresolution irrigation depth [mm]

* Preliminary, pre-release data

Comparison: Field-Resolution

Estimated irrigation for all irrigated fields in LEMA by year

- Variability among algorithms
 - Low end: geeSEBAL, DisALEXI
 - High end: SSEBop, SIMS
 - Source of uncertainty
- Variability among years
 - Wet year (2019): underestimate
 - Dry year (2020): overestimate
 - Method does not account for year to year soil moisture carryover
 - Source of uncertainty

Comparison: Water Rights Group

Comparison to flowmeter data for each water rights group

- Only the "easy" water rights groups are shown
 - 1 field, 1 well, 1 water right
 - Decent agreement, especially for ensemble
 - Worse fit for more complex water rights groups >
 source of uncertainty
- Variability among algorithms
 - source of uncertainty

Comparison: LEMA-scale

Comparison to flowmeter data for entire LEMA

 Substantially more variability in OpenET estimates than flowmeter data

Summary

Can satellite-based approaches provide reasonable estimates of groundwater pumping?

 General agreement on trends and order of magnitude, but not resolved to managementrelevant accuracy

What are major sources of uncertainty?

- ET estimates -> differences among algorithms
- Estimating irrigation from ET → multiple approaches
- Linking fields to wells \rightarrow changes through the years!
- Timescale of aggregation → soil moisture carryover
- More I didn't mention:
 - Irrigation status -> disagreement among datasets
 - Precipitation dataset → variability among options

Thank you for your attention!

In sum:

- Remotely sensed approaches have promise for assessing irrigation water use and water conservation effectiveness.
- However, substantial uncertainties remain resolving these will be key to operational use and spatial/temporal disaggregation.

How can you see using OpenET data in your work?

Sam Zipper, Kansas Geological Survey, University of Kansas samzipper@ku.edu

Atmosphere: ET and management

What if you don't live in Kansas? ...maybe Montana?

Can satellite-based approaches provide reasonable estimates of groundwater pumping?

What are major sources of uncertainty?