Streambank Stabilization: Why, How, and Is It Working?

Kari Bigham, PE and Tony Layzell, PhD (KGS)

August 25, 2020

Why Mitigate Streambank Erosion?

- Streambank erosion is a:
 - Natural process of streams
 - Essential component of river ecosystems

Accelerated Streambank Erosion

- An effect of 'channel instability'
- Caused by some change within the watershed and/or stream corridor

Channel Instability

• Examples of Change:

 Converting Prairie to Ag Land or City

- Channelization
- Dams
- Removal of Riparian Vegetation
- Sand/Gravel Dredging
- Many others....

Why We Mitigate Accelerated* Streambank Erosion in Kansas

- Protect reservoirs
- Protect land
- Improve river ecosystems & water quality

How are we addressing unstable streams?

• Physically changing the stream to more stable form

Basics of a Meandering River

Streambank Stabilization Techniques Used in Kansas

- Flow deflectors
- Additional bank protection
- Vegetation plantings

Streambank Stabilization

- A single technique or system of techniques that maximize localized streambank shear strength and/or minimize the forces acting on a streambank with the intent of halting or slowing lateral retreat
- Make sure streambed is stable or failure likely imminent.

Streambank Erosion

- Driven by:
 - Streambank characteristics (shear strength)
 - Soil physical properties and layers
 - Streambank height and angle
 - Vegetation cover and root depth
 - Gravitational and hydraulic forces (applied shear stress)
 - Gravitational force weight of the streambank
 - Hydraulic force the force applied by the flowing water; dependent on density of water, channel dimensions, and profile

Streambank Stabilization

- Lots of techniques available:
 - Rigid structure
 - Spurs (Impermeable or permea
 - Bendway weirs
 - Rock vanes
 - Iowa vanes
 - Tree revetments
 - Toe rock
 - Bank shaping
 - Bankfull bench
 - Vegetation/Bioengineering

How do you select technique(s)?

Streambank Stabilization Approach	Shear Strength Addition	Gravitational Force Reduction	Hydraulic Force Reduction	Habitat Improvement	Cost
Spurs			X	Χ	\$\$\$
Bendway Weir			Χ	Χ	\$\$
Rock Vane			Χ	Χ	\$\$
Iowa Vane			Χ		\$\$
Tree Revetment	Χ		Χ	Χ	\$
Toe Protection	X	X			\$\$
Rigid Structure	X	X			\$\$\$\$
Bank Shaping	X	X			\$\$
Bankfull Bench		X	X	Χ	\$\$
Vegetation	X		X	X	\$

Techniques Used in Kansas Today

Streambank Stabilization Approach	Shear Strength Addition	Gravitational Force Reduction	Hydraulic Force Reduction	Habitat Improvement	Cost
Spurs			X	Χ	\$\$\$
Bendway Weir			Χ	Χ	\$\$
Rock Vane			Χ	Χ	\$\$
Iowa Vane			Χ		\$S
Tree Revetment	X		Χ	Χ	\$
Toe Protection	Χ	Χ			\$\$
Rigid Structure	X	Χ			\$\$\$\$
Bank Shaping	Χ	Χ			\$\$
Bankfull Bench		Χ	Χ	X	\$\$
Vegetation	X		X	X	\$

Techniques Used in Kansas Today

Monitoring...

Tony Layzell, Kansas Geological Survey Kansas Water Office, Aug 25th, 2020

Unmanned Aircraft Systems (UAS)

Cottonwood River

Cottonwood/Neosho flooding – Oct 10th 2018

3D model of streambanks

Photogrammetry

- Structure from motion
- Ground control points

April 24, 2019

July 2, 2019

129,319 ft³ eroded

26,551 ft³ stored on bank toe

Cottonwood River

- 14 SBS sites
- 8 unmodified sites

Pre

Site C62				Volume eroded				
	Time period	No. days	No. years	Total (ft³)	per year (ft³/yr)	per year (tons/yr)	per year/bank length (tons/yr/ft)	
	7/7/06-12/15/10	1622	4.4	790,978	177,994	7921	5.0	
	12/15/10-4/7/15	1562	4.3	50,959	11,908	530	0.3	

	Site C62			Volume eroded				
	Time period	No. days	No. years	Total (ft³)	per year (ft³/yr)	per year (tons/yr)	per year/bank length (tons/yr/ft)	
Due	7/7/06-12/15/10	1622	4.4	790,978	177,994	7921	5.0	
Pre	12/15/10-4/7/15	1562	4.3	50,959	11,908	530	0.3	
Post	4/7/15-3/1/19	1424	3.9	142,142	36,434	1621	1.0	
	3/1/19-10/16/19	229	0.6	45,838	73,061	3251	1.9	

Is this SBS project effective?

Concerns with accuracy of pre-construction imagery Are **average** pre-construction values representative?

Highlights importance of obtaining accurate and representative baseline data

Post-construction (As-built-1st flight)

Post-construction (1st-2nd flight)

Pre-construction (1992-2015)

0.4

Normalized for total volume of water (kcfs) for each time period.

Average 75% efficiency in reducing sediment

Worst case scenario - Max erosion

	Length	Total eroded					
_	(ft)		(ton/yr)				
	21549	Total (from C2-C15)	61765	Assuming no SBS (using av. natural rate)			
	8281	Stabilized	6795	At SBS sites (using av. stabilized rate)			
	13268	Natural/Unmodified	38030	Natural reaches (using av. natural rate)			
		_	44824	_			

Price / ft 71.5 \$/ft SBS cost

Total (\$) 592,080 \$ (est. cost for C15-C2)

34.95 \$/ton/yr

16941 Total saved (ton/yr) 27.4%

Take home points

- Utility of using UAS to monitor streambank erosion
- Stabilized streambanks are effective in reducing streambank erosion
- Importance of accurate baseline data (C102 & C112)
- Site to site variability
- Upstream/downstream effects being investigated

